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readiness to discuss new approaches in quantum chemistry. In fact, it was his encouragement that
finally led to the present study.

A trial function is presented for the H2 molecule which provides the most accurate (the low-
est) Bohr–Oppenheimer ground state energy among few-parametric trial functions (with ≤14
parameters). It includes the electronic correlation term in the form ~ exp (γr12) where γ is a
variational parameter.
Keywords: H2 molecule; Trial function; Hamiltonian; Born–Oppenheimer energy; Ground
state; Quantum chemistry.

Hydrogen molecule H2 is among the most important chemical objects
which appear in Nature. Since early days of quantum mechanics after pio-
neering paper by James, Coolidge1 many studies of H2 were carried out (see
ref.2 and references therein). The paper1 contained a clear indication that
the interelectron correlation must be included explicitly. In general, the
success of calculations and, in particular, a rate of convergence of a method
used depends very much on a form of the correlation factor3–5 (for a review,
see ref.6, Section 2.2). In particular, recently, it was drawn a conclusion
based on an analysis of many atomic and molecular systems that the best
form of correlation factor is exp (γr12) comparing to linear or the Gaussian
in r12 factors7. No clear reason was given so far why it is so. A goal of this
note is to present a simple, compact, easy-to-handle trial function which
leads to the most accurate (the lowest) Bohr–Oppenheimer ground state en-
ergy among few-parametric trial functions (≤14 parameters). The variational
energy is calculated numerically using a specially designed computer code
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for multidimensional numerical integration with high accuracy. The trial
function contains interelectron correlation in the form exp (γr12). It is
worth mentioning that long time ago this dependence on r12 appeared in
the variational trial functions in studies of the H2 molecule in a magnetic
field8 and, recently, of other two-electron molecular systems in a magnetic
field9–11. A hint why namely this r12-dependence leads to the fast conver-
gent results will be given.

The Hamiltonian which describes the hydrogen molecule under the as-
sumption that the protons are infinitely massive (the Born–Oppenheimer
approximation of zero order) can be written as follows
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where $pl l= − ∇i is the 3-vector of the momentum of the l-th electron, the
index κ runs over protons A, B, rl,κ is the distance between l-th electron and
κ proton, r12 is the interelectron distance, R is the interproton distance. It is
the established fact that the ground state of the H2 molecule is 1 ∑ +

g , the
spin-singlet state, symmetric under permutations of electron positions as
well as proton positions.

VARIATIONAL METHOD

The variational procedure is used as a method to explore the problem. The
recipe of choosing the trial function is based on a physical relevance argu-
ments (see, e.g., ref.12). In practice, use of such trial functions implies the
convergence of a special form of the perturbation theory where the
variational energy is the sum of the first two terms. Let us remind the es-
sentials of this perturbation theory (for details, see ref.12). Let us assume
that our original Hamiltonian has a form H = –∆ + V. As a first step we
choose a trial function ψ(trial) which is normalized to one. Then we find a
potential for which our trial function ψ(trial) is the exact eigenfunction Vtrial =
∆ψ

ψ

( )

( )

trial

trial with the energy Etrial = 0. In a pure formal way we can construct a
Hamiltonian Htrial = –∆ + Vtrial such that Htrialψ(trial) = 0. It can be easily
shown that the variational energy

Evar = 〈ψ(trial)|H|ψ(trial)〉
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is nothing but the first two terms in the perturbation theory where the un-
perturbed problem is given by Htrial, the perturbation is the deviation of the
original potential V from the trial potential Vtrial, namely, Vperturbation = V –
Vtrial. Eventually, we arrive at the formula

Evar = Etrial + E1(Vperturbation) . (2)

Here E1(Vperturbation) = 〈ψ(trial)|Vperturbation|ψ(trial)〉 is the first energy correction
in the perturbation theory, where unperturbed potential is Vtrial. It is worth
noting that if the trial function is the Hartree–Fock function the resulting
perturbation theory is nothing but the Moeller–Plesset perturbation theory
(see, e.g., ref.13, Section 15.18)14.

One of the criteria of convergence of the perturbation theory in Vperturbation =
V – Vtrial is a requirement that the ratio | |V

V
perturbation

trial
should not grow when r

tends to infinity in any direction. If this ratio is bounded by a constant it
should be less than one. In fact, it is a condition that the perturbation po-
tential is subordinate with respect to the unperturbed potential. A value of
this constant controls the rate of convergence – a smaller value of this con-
stant leads to faster convergence15. Hence, the above condition gives an im-
portance to the large-range behavior of the trial functions. In the physics
language the above requirement means that the phenomenon of the
Dyson’s instability should not occur (for a discussion, see ref.12)16. Among
three factors which are mentioned in literature (see ref.6): the linear in r12,
exponential exp (γr12) and exp (−αr12

2 ), the only factor exp (γr12) fulfills the
above requirement. It was demonstrated in ref.3 that a superposition of the
Coulomb functions with exponentially correlated function exp (γr12) (see
below, Eq. (4)) leads to faster convergence than others. Perhaps, it is worth
mentioning that for the case of Gaussian factor the above-defined constant
is equal to one exactly. In concrete, by following the above procedure, a re-
quirement of the convergence of the perturbation theory we choose the
trial function for the ground state in a form

ψ(trial) = A1ψ1 + A2ψ2 + A3ψ3 (3)

where

ψ1 = (1 + P12)(1 + PAB) e A B A B− − − − +α α α α γ1 1 2 1 3 2 4 2 1 12r r r r r (4)
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ψ2 = (1 + P12) e A B B A− + − + +α α γ5 1 2 6 1 2 2 12( ) ( )r r r r r (5)

ψ3 = (1 + P12)e A B A B− + − + +α α γ7 1 1 8 2 2 3 12( ) ( ) .r r r r r (6)

The P12 is the operator which interchanges electrons (1 ↔ 2) and PAB is the
operator which interchanges the two nuclei A ↔ B. It is easy to check that
the functions (5) and (6) are symmetric with respect to the interchange A ↔ B.
The variational parameters consist of non-linear parameters α1–8, γ1–3 which
characterize (anti)screening of the Coulomb charges and linear parameters
A1–3. If the internuclear distance R is taken into account the trial function
(3) depends on 14 parameters17. It is worth mentioning that (5) is a degen-
eration of (4) when α1 = α4, α2 = α3 and (6) is another degeneration of (4)
when α1 = α2, α3 = α4. In a certain way, the function (5) mimics the interac-
tion of two hydrogen atoms H + H, while the function (6) mimics the inter-
action H2

+ + e. Eventually, the function (4) can be treated as a non-linear
interpolation between (5) and (6). Those functions look analogous to the
Hund–Mulliken, Heitler–London and Guillemin–Zener functions, respec-
tively.

Calculations were performed using the minimization package MINUIT
from CERN-LIB. Multidimensional integration was carried out numerically
using a “state-of-the-art” dynamical partitioning procedure: a domain of in-
tegration was divided into subdomains following an integrand profile, in
particular, the domains with sharp changes of the integrand were separated
out. Then each subdomain was integrated separately with controlled accu-
racy (for details, see, e.g., ref.18). A realization of the routine requires a lot of
attention and care. During minimization process a partitioning was perma-
nently controlled and adjusted. Numerical integration was done with a rel-
ative accuracy of ~10–6–10–7 by use of the adaptive D01FCF routine from
NAG-LIB. Computations were performed on a dual DELL PC with two Xeon
processors of 2.8 GHz each.

RESULTS

Present results for the ground state of the H2 molecule and their compari-
son with results of previous studies are displayed in Table I. The Bohr–
Oppenheimer ground state energy obtained using the function (3)–(6) is
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TABLE I
Total energy ET in Ry and expectation values in a.u. of the hydrogen molecule H2 for the
ground state. r1, z1 are distances from 1st electron to the mid-point between protons. Some
data are rounded

ET, Ry 〈 〉−r12
1 〈 〉r1

2 r r

R
1 1A B+ 〈 − 〉3 1

2
1
2z r Ref.

–2.34697a 1

–2.34778b 20

–2.34787c 3

–2.348382d 2.5347 0.5227 19

–2.348393e 0.5874 2.5487 2.2133 0.4847 present

–2.34872f 2.5426 0.5142 19

–2.34888g 0.5874 2.2127 19

–2.34895h 2

a From ref.1 (the BO energy with 14 variational parameters). b From ref.20 (based on use of
>200 non-spherical Gaussian orbitals). c From ref.3 (N = 3 exponentially correlated func-
tions). d From Table III ref.19 (the BO energy with 14 variational parameters). e Present calcu-
lation (14 variational parameters). f From Table III ref.19 (the BO energy with 28 variational
parameters). g From Table II ref.19 (the BO ground state energy with 40 variational parame-
ters). h From ref.2 (7 034 James–Coolidge type terms, the record calculation at present, the
number in table is rounded).

TABLE II
Parameters of the trial function (3)

R 1.40053 R 1.40053 R 1.40053

A1 1 A2 –1.15105579 A3 0.256342676

α1 0.720674986 α5 0.604583808 α7 0.968330781

α2 0.521577488 α6 0.658402827 α8 0.229153253

α3 0.130799743 γ2 –0.349101361 γ3 –0.354509413

α4 1.30816746

γ1 0.0655006315



the most accurate (the lowest) among those obtained with other trial func-
tions with ≤14 parameters. A reasonable agreement for expectation values is
also observed, except for 〈3 1

2
1
2z r− 〉 related to the quadrupole moment. To

present authors it seems evident that this expectation value should be stud-
ied separately (see also ref.19). It is not surprising that the obtained value of
the cusp parameter in r12 is equal to 0.4 unlike to the exact value 0.5 (see
note7). Variational parameters of the trial function (3) are shown in Table II.
It is worth emphasizing that numerical calculations are very difficult and
can easily lead to a loss of accuracy. In ref.3 a similar function (3) but with
all three components of the form (4) containing 18 variational parameters
was studied using variational Monte–Carlo technique. A comparison of our
results with less parameters with ref.3 (see Table I) indicates that we obtain
a lower total energy of the order 5 × 10–4 Ry.

CONCLUSION

We presented a simple, compact few-parametric trial function which pro-
vides the most accurate Bohr–Oppenheimer energy for H2 molecule among
those based on few-parametric (≤14) trial functions. Emerging five-
dimensional integrals were effectively calculated using fast state-of-the-art
integration routine which admits parallelization. The trial function (3) can
be easily generalized by adding other physically-natural degenerations of
(4) than (5) and (6). One of them appears when all α-parameters in (4) are
equal. It should be dominant in a domain of small interproton distances. It
seems natural to assume that taking linear superpositions of the functions
(4) we end up with fast convergent procedure (see ref.3). The function (3)
can be easily modified for a study of spin-triplet states, as well as the states
of the lowest energy with non-vanishing magnetic quantum numbers. A
generalization to more-than-two electron systems is straightforward.
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